

CONTENTS

S1. No.	Subject Title	Subject Code
1	Mathematical Physics	24PCPH11
2	Classical Mechanics and Relativity	24PCPH12
3	Linear and Digital IC and Applications	24PCPH13
4	General Physics Practical - I	24PCPH1P1
5	Electronics Practical - I	24PCPH1P2
6	Physics of Nanoscience and Technology	24PEPH11A
7	Plasma Physics	24PEPH11B
8	Materials Science	24PEPH11C
9	Basics of Digital Electronics	24PIPH11
10	Quantum Mechanics -I	24PCPH21
11	Statistical Mechanics	24PCPH22
12	General Physics Practical –II	24PCPH2P1
13	Advanced Electronics Practical	24PCPH2P2
14	Advanced Mathematical Physics	24PEPH21A
15	Medical Physics	24PEPH21B
16	Characterization of Materials	24PEPH21C
17	Solar Energy Utilization	24PIPH21
18	Spectroscopy	24PSPH21
19	Skill Enhancement Course-III NPTEL-SWAYAM Online Certification Course (or) Naan Muthalvan : (Choose any one course from the list of courses suggested by TANSCHE)	24PSPH22

Sem	Course	Title of the Course	Course	H/W	С	Marks			
Sem	Туре	The of the Course	Code	П/ W	C	Ι	E	Т	
	Core-I	Mathematical Physics	24PCPH11	6	5	40	60	100	
	Core-II	Classical Mechanics and Relativity	24PCPH12	5	5	40	60	100	
Ι	Core- III	Linear and Digital IC and Applications	24PCPH13	5	4	40	60	100	
•	Core- P-I	General Physics Practical - I	24PCPH1P1	4	2	20	30	50	
	Core- P-II	Electronics Practical	24PCPH1P2	4	2	20	30	50	
	EC-I	Physics of Nanoscience and Technology	24PEPH11A	4	3	40	60	100	
		Plasma Physics	24PEPH11B						
		Materials Science	24PEPH11C						
	EC-II (IDC-I)	Basics of Digital Electronics	24PIPH11	2	2	15	35	50	
		SOP		-	-				
				30	23			550	
	Core- IV	Quantum Mechanics -I	24PCPH21	5	5	40	60	100	
	Core-V	Statistical Mechanics	24PCPH22	5	4	40	60	100	
II	Core- P-III	General Physics Practical –II	24PCPH2P1	4	2	20	30	50	
	Core- P-IV	Advanced Electronics Practical	24PCPH2P2	4	2	20	30	50	
	EC-III	Advanced Mathematical Physics	24PEPH21A	4	3	40	60	100	
		Medical Physics	24PEPH21B						
		Characterization of Materials	24PEPH21C				30 60 35 60 60 60 30 60 30 60 30 60 30 60 30 60 35 60		
	EC-IV (IDC- II)	Solar Energy Utilization	24PIPH21	2	2	15	35	50	
	SEC-I	Spectroscopy	24PSPH21	4	3	40	60	100	
	SEC-II	Skill Enhancement Course-III NPTEL-SWAYAM Online Certification Course (or) Naan Muthalvan : (Choose any one course from the list of courses suggested by TANSCHE)	24PSPH22	2	2	-	-	50	
		SOP		-	1			100	
	Summer	– Internship Industry Training du third seme	uring the 1 st yea ster mark staten		ion - cre	dits l	be give	en in the	

Programme Structure & Credits – PG (Sciences) 2024 - 2027

Department of PG & Research Department of Physics Programme: M.Sc., Programme Outcomes

	Programme Outcomes
PO	Upon Completion of M.Sc. Physics Degree Programme, the
NO.	Graduates will be able to:
PO 1	Disciplinary Knowledge
	• Acquire in-depth scientific knowledge in the core areas of study
PO 2	Creative Thinking and Practical Skills / Problem Solving Skills
	• Enrich skills of observation to draw logical inferences from
	scientific experiments/ programming and skills of creative
	thinking to develop novel ideas.
	• Hone problem solving skills in theoretical, experimental and
	computational areas and to apply them in real life situations
PO 3	Sense of inquiry and Skilled Communicator / Research,
	Innovation and Entrepreneurship
	• Develop the capability for raising appropriate questions relating
	to the current/emerging issues encountered in the scientific
	field and to plan, execute and express the results of
	experiments / investigations through technical writings as well
	as through oral presentations.
	• Design innovations for exploring the unexplored areas in
	diverse fields to accomplish socially relevant and economically
	beneficial innovative research projects
	• Become a skilled entrepreneur for launching start-up /
	business ventures to improve the economy of the nation.
PO 4	Ethical Awareness/Team Work / Environmental Conservation
	and Sustainability
	• Equip them for conducting work as an individual / as a
	member, or as a leader in diverse teams upholding values such
	as honesty and precision, and thus preventing unethical
	behaviors such as fabrication, falsification, misrepresentation
	of data, plagiarism etc. to ensure academic integrity.
	• Realise that environment and humans are dependent on one
	another and to know about the responsible management of our
	ecosystem for survival, and for the well-being of the future
	generation as well.
PO 5	Digital Literacy / Self-Directed / Learning /Usage of ICT /
100	Lifelong Learning
	• Get access to digital resources, to use them judiciously for
	updation of knowledge and also to engage in remote/
	independent learning.
	• Inculcate the habit of learning continuously through the
	effective adoption of ICT to update knowledge in the emerging
	areas in Sciences for inventions/discoveries so that the
	knowledge transferred from laboratory to land would yield
	fruitful results for the betterment of global society.

Programme Specific Outcomes (PSO)

PSO	Upon Completion of M.Sc Physics Degree Programme,	POs
NO.	the Graduates will be able to:	mapped
PSO-1	Acquire knowledge in analytic and critical thinking skills in	PO1, PO2
	major branches of Physics.	
PSO-2	Familiarize themselves with contemporary research in	PO3, PO4
	various fields of Physics by enhancing pedagogical and	
	scientific writing skills for Projects through modern	
	methods.	
PSO-3	Develop leadership skill and find ways to apply their	PO1, PO4,
	knowledge of Physics with advancement in higher	PO5
	education and career besides the desire to remain lifelong	
	learners.	
PSO-4	Solve issues concerned in the society with the help of	PO3, PO4,
	Physics and its principles.	PO5
PSO-5	Demonstrate the various concepts of Physics through the	PO1, PO2,
	practical courses which are framed in relevance to that of	PO3
	the theory courses.	

Semester - I	MATHEMATICAI	24PCPH11				
Core – I			L	Т	P	С
Hrs./Week: 6	Hrs./Semester : 90	Marks :100	6			5

Mathematical Physics provides firm foundation in various mathematical methods developed and used in understanding different physical phenomena.

Learning Objectives								
LO	The learners will be able to:							
LO-1	Equip students with the mathematical techniques needed for understanding theoretical treatment in different courses taught in their program							
LO-2	Extend their manipulative skills to apply mathematical techniques in their fields							
LO-3	Help students apply Mathematics in solving problems of Physics							
LO-4	Develop problem solving skill in Fourier and Laplace transforms.							
LO-5	Comprehend knowledge in Mathematical Physics and its applications.							

UNIT - I LINEAR VECTOR SPACE (18 Hours)

Basic concepts – Definitions- examples of vector space – Linear independence - Scalar product- Orthogonality – Gram-Schmidt orthogonalization procedure –linear operators – Dual space- ket and bra notation – orthogonal basis – change of basis – Isomorphism of vector space – projection operator –Eigen values and Eigen functions – orthogonal transformations and rotation.

UNIT - II COMPLEX ANALYSIS PROBABILITY&STATISTICS (18 Hours)

Functions of a Complex Variable- Differentiability -Analytic functions-Harmonic Functions- Complex Integration- Contour Integration, Cauchy – Riemann conditions – Singular points – Cauchy's Integral Theorem and integral Formula -Taylor's Series - Laurent's Expansion- Zeros and poles – Residue theorem.

Probability – Introduction – Addition rule of probability – Multiplication law of probability–Introduction to statistics–Mean, median, mode and standard deviations.

UNIT- III MATRICES (18 Hours)

Types of Matrices and their properties, Rank of a Matrix -Conjugate of a matrix - Adjoint of a matrix - Inverse of a matrix - Hermitian and Unitary Matrices -Trace of a matrix- Transformation of matrices - Characteristic equation - Eigen values and Eigen vectors - Cayley-Hamilton theorem -Diagonalization.

UNIT – IV FOURIER TRANSFORMS & LAPLACE TRANSFORMS (18 Hours)

Definitions -Fourier transform and its inverse - Transform of Gaussian function and Dirac delta function -Fourier transform of derivatives - Cosine and sine transforms - Convolution theorem. Application: Diffusion equation: Flow of heat in an infinite and in a semi - infinite medium. Laplace transform and its inverse - Transforms of derivatives and integrals – Differentiation and integration of transforms - Dirac delta functions.

UNIT- V DIFFERENTIAL EQUATIONS (18 Hours)

Second order differential equation- Series solution with simple examples - Hermite polynomials - Generating function - Orthogonality properties - Recurrence relations – Legendre polynomials - Generating function - Rodrigue formula – Orthogonality properties - Dirac delta function- One dimensional Green's function and Reciprocity theorem

TEXT BOOKS

- 1. George Arfken and Hans J Weber, 2012, Mathematical Methods for Physicists A Comprehensive Guide (7th edition), Academic press.
- 2. P.K. Chattopadhyay, 2013, Mathematical Physics (2nd edition), New Age, New Delhi
- 3. A W Joshi, 2017, Matrices and Tensors in Physics, 4th Edition (Paperback), New Age International Pvt.Ltd., India
- 4. B. D. Gupta, 2009, Mathematical Physics (4th edition), Vikas Publishing House, New Delhi.
- 5. H. K. Dass and Dr. Rama Verma, 2014, Mathematical Physics, Seventh Revised Edition, S. Chand & Company Pvt. Ltd., New Delhi.

- 1. E. Kreyszig, 1983, Advanced Engineering Mathematics, Wiley Eastern, New Delhi,
- 2. D. G. Zill and M. R. Cullen, 2006, Advanced Engineering Mathematics, 3rd Ed. Narosa, New Delhi.
- S. Lipschutz, 1987, Linear Algebra, Schaum's Series, McGraw Hill, New York 3. E. Butkov, 1968, Mathematical Physics Addison - Wesley, Reading, Massachusetts.
- 4. P. R. Halmos, 1965, Finite Dimensional Vector Spaces, 2nd Edition, Affiliated EastWest, New Delhi.
- 5. C. R. Wylie and L. C. Barrett, 1995, Advanced Engineering Mathematics, 6th Edition, International Edition, McGraw-Hill, New York.

	Course Outcomes		
СО	Upon completion of this course, students	PSOs	Cognitive
	would have learned to:	Addressed	Level
CO-1	Understand use of bra-ket vector notation and explain the meaning of complete orthonormal set of basis vectors, and transformations and be able to apply them	PSO1, PSO3	K1, K2
CO-2	Able to understand analytic functions, do complex integration, by applying Cauchy Integral Formula. Able to compute many real integrals and infinite sums via complex integration.	PSO1, PSO3	K2, K3
CO-3	Analyze characteristics of matrices and its different types, and the process of diagonalization.	PSO1, PSO2, PSO3	K4
CO-4	Solve equations using Laplace transform and analyze the Fourier transformations of different function, grasp how these transformations can speed up analysis and correlate their importance in technology.	PSO2, PSO3	K4, K5
CO-5	To find the solutions for physical problems using linear differential equations and to solve boundary value problems using Green's function. Apply special functions in computation of solutions to real world problems	PSO1, PSO2, PSO4	K2, K5
K1-Rei	nembering; K2 – Understanding; K3 - Applying; K4 - K6 - Creating	Analyzing; K5 -	- Evaluating;

Relationship Matrix

Semester	Co	urse C	ode	1	Title of the Course			Ho	ours	Credit	
I	24	IPCPH	11	MAT	HEMA'	FICAL P	HYSICS	\$ 9	90	5	
Course Outcomes	Pro	gramm	ie Outo	comes	(POs)	Prog	gramme	Specifi (PSOs)		omes	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO-1	3	3	3	3	3	3	3	2	3	2	
CO-2	2	3	3	3	3	3	3	2	2	2	
CO-3	3	3	3	2	2	3	3	2	3	2	
CO-4	3	3	3	3	2	3	3	2	2	2	
CO-5	3	2	3	3	2	3	3	2	2	3	
		S	TRON	G (3), №	IEDIUN	I (2) an	d LOW	1)			

Prepared by Name:

Checked by

Signature:

Semester - I	CLASSICAL MECH	24PCPH12				
Core – I	RELATIV	L	Т	P	C	
Hrs./Week: 5	Hrs./Semester: 75	Marks :100	5			5

To understand the motion of particles through Lagrangian and Hamiltonian formulations.

Learning Objectives						
LO	The learners will be able to					
LO-1	Understand fundamentals of classical mechanics.					
LO-2	Understand Lagrangian formulation of mechanics and apply it to					
LO-2	solve equation of motion.					
LO-3	Understand Hamiltonian formulation of mechanics and apply it					
LO-3	to solve equation of motion.					
LO-4	Discuss the theory of small oscillations of a system.					
LO-5	Learn the relativistic formulation of mechanics of a system.					

UNIT- I LAGRANGIAN FORMULATION (15 Hours)

Mechanics of a particle and system of particles – Conservation laws: conservation of linear and angular momentum– Constraints and degrees of freedom – Generalised co-ordinates - D' Alembert's principle of virtual work – Lagrange's equations of motion – non-holonomic system- application of Lagrange's equations of motion: simple pendulum, Atwood's machine, free particle in space - velocity dependent potential.

UNIT – II TWO BODY CENTRAL FORCE PROBLEM (15 Hours)

Reduction to the equivalent one body central force problem – Equations of motion and first integrals – Virial theorem – The equivalent one dimensional problem and classification of orbits – Differential equation for the orbit - Kepler's problem: Inverse square law of force – Scattering in a central force field – Transformation of scattering problems to laboratory coordinates.

UNIT – III KINEMATICS OF RIGID BODY MOTION (15 Hours)

Independent coordinates of a rigid body – Orthogonal transformation-Euler angles – Coriolis force-Angular momentum and Kinetic energy of motion about a point – Inertia tensor and Moment of inertia- Euler's equations of motion (Newtonian & Lagranjian Method) – Torque free motion of a rigid body – heavy symmetrical top.

UNIT- IV HAMILTONIAN FORMULATION AND CANONICAL TRANSFORMATION (15 Hours)

Calculus of variation - Principle of least action - Other forms of action Principles - Hamilton's principle-Lagrange's equation from Hamilton's principle- Canonical transformation - Generating Functions - Poisson's brackets and its properties - Hamilton's-Jacobi equation for Hamilton's principal function – Example: Harmonic Oscillator problem – Hamilton's characteristic Function – Action angle variables.

UNIT - V SMALL OSCILLATIONS AND THEORY OF RELATIVITY (15 Hours)

Stable and unstable Equilibrium - Lagrange's equation of motion for small oscillations - Normal Co-ordinates and normal frequencies of vibration -Free vibrations of linear tri atomic molecule- Basic Postulates of Special theory of Relativity - Lorentz transformation- Force and energy equations in relativistic Mechanics- Lagrangian and Hamiltonian formulation of relativistic mechanics.

TEXT BOOKS

- 1. H. Goldstein, 2002, Classical Mechanics, 3rd Edition, Pearson Edu.
- 2. J. C. Upadhyaya, Classical Mechanics, HimalayaPublshing. Co.New Delhi.
- 3. R. Resnick, 1968, Introduction to Special Theory of Relativity, Wiley Eastern, New Delhi.
- 4. R. G. Takwala and P.S. Puranik, Introduction to Classical Mechanics Tata McGraw Hill, New Delhi, 1980.
- 5. N. C. Rana and P.S. Joag, Classical Mechanics Tata McGraw Hill, 2001

- 1. K. R. Symon, 1971, Mechanics, Addison Wesley, London.
- 2. S. N. Biswas, 1999, Classical Mechanics, Books & Allied, Kolkata.
- 3. Gupta and Kumar, Classical Mechanics, KedarNath.
- 4. T.W.B. Kibble, Classical Mechanics, ELBS.
- 5. Greenwood, Classical Dynamics, PHI, New Delhi.

Course Outcomes									
СО	Upon completion of this course, students would have learned to:	PSOs Addressed	Cognitive Level						
CO-1	Understand the fundamentals of classical mechanics.	PSO1, PSO2, PSO3	K2						
CO-2	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	PSO2, PSO3	K3						
CO-3	Apply the principles of Lagrangian and Hamiltonian mechanics to solve the equations of motion of physical systems.	PSO1, PSO2, PSO3	K3, K5						
CO-4	Analyze the small oscillations in systems and determine their normal modes of oscillations.	PSO2, PSO3, PSO4	K4, K5						
CO-5	Understand and apply the principles of relativistic kinematics to the mechanical systems.	PSO1, PSO3	K2, K3						

K1-Remembering; K2 – Understanding; K3 - Applying; K4 - Analyzing; K5 – Evaluating; K6 – Creating

Relationship Matrix

Semester Course Code		e	Title of the Course					Cı	Credit	
I	24P	CPH12	(CLASS		IECHAN	IICS	75		5
				ANI	O RELA	ATIVITŸ	?			
Course	Prog	ramme	Outco	omes (POs)	Prog	ramme	Specifi	c Outco	mes
Outcomes								(PSOs)		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO-1	2	3	3	3	2	2	2	3	3	2
CO-2	2	3	3	3	2	2	2	3	3	3
CO-3	2	3	3	3	2	2	2	3	3	3
CO-4	2	3	3	3	2	2	2	3	2	3
CO-5	2	3	3	3	2	2	2	3	2	3
	•	ST	RONG	(3), M	EDIUM	l (2) and	LOW (1)	•	•

Prepared by Name:

Checked by

Signature:

Semester - I	LINEAR AND DIGIT	24PCPH13					
Core – III	APPLICATI	L	Т	P	C		
Hrs./Week: 5	Hrs./Semester: 75	Marks :100	5			4	

To introduce the theoretical concept of linear and digital ICs and their various applications.

	Learning Objectives
LO	The learners will be able to
LO-1	Introduce the basic building blocks of linear integrated circuits.
LO-2	Teach the linear and non-linear applications of operational amplifiers.
LO-3	Introduce the theory and applications of PLL.
LO-4	Introduce the concepts of waveform generation and introduce one special function ICs.
LO-5	Exposure to digital IC's

UNIT - I INTEGRATED CIRCUITS AND OPERATIONAL AMPLIFIER (15 Hours)

Introduction- Classification of IC's- basic information of Op-Amp 741 and its features- the ideal Operational amplifier- Op-Amp internal circuit and Op-Amp- DC Characteristics.

UNIT – APPLICATIONS OF OP-AMP (15 Hours)

Linear applications of OP-AMP: Solution to simultaneous equations and differential equations- Instrumentation amplifiers- V to I and I to V converters.

Non-linear applications of OP-AMP: Sample and Hold circuit- Log and Antilog amplifier- multiplier and divider- Comparators- Schmitt trigger-Multivibrators- Triangular and Square waveform generators.

UNIT – III ACTIVE FILTERS & TIMER AND PHASE LOCKED LOOPS (15 Hours)

Active Filters: Introduction- Butterworth filters – 1st order, 2nd order low pass and high pass filters- band pass- band reject and all pass filters.

Timer and Phase Locked Loops: Introduction to IC 555 timerdescription of functional diagram- monostable and astable operations and applications- Schmitt trigger- PLL – Introduction- basic principle- phase detector/comparator- voltage-controlled oscillator (IC 566).

UNIT - IV VOLTAGE REGULATOR & D to A AND A to D CONVERTERS (15 Hours)

Voltage Regulator: Introduction- Series Op-Amp regulator- IC Voltage Regulators- IC 723 general purpose regulators- Switching Regulator. D to A and A to D Converters: Introduction, basic DAC techniques -weighted resistor DAC- R-2R ladder DAC- inverted R-2R DAC, A to D converters parallel comparator type ADC- counter type ADC- DAC and ADC Specifications.

UNIT - V CMOS LOGIC, COMBINATIONAL CIRCUITS USING TTL 74XX ICs & SEQUENTIAL CIRCUITS USING TTL 74XX ICs (15 Hours)

CMOS Logic: CMOS logic levels- MOS transistors- Basic CMOS Inverter- NAND and NOR gates- CMOS AND-OR-INVERT and OR-AND-INVERT gates.

Combinational Circuits Using TTL 74XX ICs: Study of logic gates using 74XX ICs- Comparator (IC 7485)- BCD to 7-segment decoder (IC7447)- Encoder (IC74147) Multiplexer (IC74151)- Demultiplexer (IC 74154). Sequential Circuits Using TTL 74XX ICs: Flip Flops (IC 7474, IC 7473), Shift Registers, Universal Shift Register (IC 74194).

TEXT BOOKS

- 1. 1. D. Roy Choudhury, Shail B. Jain (2012), Linear Integrated Circuit, 4th edition, New Age International Pvt.Ltd.,NewDelhi,India
- 2. Ramakant A. Gayakwad, (2012), OP-AMP and Linear Integrated Circuits, 4th edition, Prentice Hall / Pearson Education, NewDelhi.
- 3. B.L. Theraja and A.K. Theraja, 2004, A Textbook of Electrical technology, S. Chand & Co.
- 4. V.K. Mehta and Rohit Mehta, 2008, Principles of Electronics, S. Chand & Co, 12th Edition.
- 5. V. Vijayendran, 2008, Introduction to Integrated electronics (Digital & Analog), S.Viswanathan Printers & Publishers Private Ltd, Reprint. V.

- 1. Sergio Franco (1997), Design with operational amplifiers and analog integrated circuits, McGraw Hill, New Delhi.
- 2. Gray, Meyer (1995), Analysis and Design of Analog Integrated Circuits, Wiley International, New Delhi.
- 3. Malvino and Leach (2005), Digital Principles and Applications 5th Edition, Tata McGraw Hill, New Delhi
- 4. Floyd, Jain (2009), Digital Fundamentals, 8th edition, Pearson Education, New Delhi.
- 5. Integrated Electronics, Millman & Halkias, Tata McGraw Hill, 17th Reprint (2000)

CO	Upon completion of this course,	PSOs	Cognitive
	students would have learned to:	Addressed	Level
CO-	Learn about the basic concepts for the		
1	circuit configuration for the design of	PSO1, PSO2,	K1, K5
	linear integrated circuits and develops	PSO4	AI, AS
	skill to solve problems		
CO-	Develop skills to design linear and		
2	non-linear applications circuits using	PSO1, PSO3	K3
	Op-Amp and design the active filters	1501, 1505	ns
	circuits.		
CO-	Gain knowledge about PLL, and		
3	develop the skills to design the simple	PSO1, PSO2,	K1, K3
	circuits using IC 555 timer and can	PSO4	NI, N 3
	solve problems related to it.		
CO4	Learn about various techniques to	PSO2, PSO4,	K2
	develop A/D and D/A converters.	PSO5	N2
CO-	Acquire the knowledge about the		
5	CMOS logic, combinational and	PSO1, PSO5	K1, K4
	sequential circuits		

K1-Remembering; K2 – Understanding; K3 - Applying; K4 - Analyzing; K5 – Evaluating; K6 – Creating

Relationship Matrix

Semester		ourse ode		Title	of the	Course	e	Hours	C	redit
I	24P	CPH13				DIGIT/ ICATIO		75		4
Course Outcome	Pro	ogram	me O (POs)	utcon	nes	Prog	ramm	e Specifi (PSOs)	ic Outc	omes
s (COs)	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO PSO I	
	1	2	3	4	5	1	2	3	4	5
CO-1	3	3	3	3	2	3	3	3	3	2
CO-2	3	3	3	3	2	3	3	3	3	2
CO-3	3	3	3	3	2	3	3	3	3	2
CO-4	3	3	3	3	2	3	3	3	3	2
CO-5	3	3	3	2	2	3	3	3	2	2
STRONG (3	3), ME	DIUM	(2) a	nd LO	W (1)		•	·		•

Prepared by Name:

Checked by Head of the Department

Signature:

Semester - I	GENERAL PHYSICS P	24PCPH1P1				
Core P – I			L	Т	P	C
Hrs./Week: 4	Hrs./Semester: 60	Marks :50			4	2

To train the students with advanced experimental techniques in Physics and to handle sophisticated equipment and analyze the data.

LO	The learners will be able to
LO-1	Understand the concept of mechanical behavior of materials
LO-1	and calculation of same using appropriate equations.
LO-2	Calculate the thermodynamic quantities and physical
LO-2	properties of materials.
LO-3	Analyze the optical and magnetic properties of materials.
LO-4	Expose to a hands-on training to use the He-Ne laser source
LO-5	Identify the various parameters in ESR spectrometer and
LO-2	Ultrasonic interferometer experiments

Learning Objectives

(Any Eight)

- 1. Determination of Young's modulus and Poisson's ratio by Hyperbolic fringes - Cornu's Method
- 2. Determination of viscosity of the given liquid Meyer's disc
- 3. Determination of Thickness of the enamel coating/diameter of a wire by diffraction
- 4. Determination of Specific charge of an electron Thomson's method
- 5. Determination of Wavelength, Separation of wavelengths -Michelson Interferometer
- 6. GM counter Characteristics and inverse square law.
- 7. Molecular spectra AlO band.
- 8. Determination of Planck constant LED method
- 9. Measurement of wavelength of Diode Laser / He Ne Laser using Diffraction grating.
- 10. UV-Visible spectroscopy Verification of Beer-Lambert's law and identification of wavelength maxima Extinction coefficient
- 11. Ultrasonic Interferometer Velocity and compressibility of any two liquidmutuals
- 12. Cauchy's constants by least square fit (Experimental method)

- 13. ESR Spectrometer Determination of Lande's factor
- 14. Biprism Determination of wave length (optic bench)
- 15. Dielectric constants and loss of liquids

TEXT BOOKS

- 1. Practical Physics, Gupta and Kumar, Pragati Prakasan.
- 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences.

- 1. Advanced Practical Physics, S.P Singh, PragatiPrakasan.
- 2. An advanced course in Practical Physics, D.Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd.

CO	Upon completion of this course,	PSOs	Cognitive
	students would have learned to:	Addressed	Level
C01	Understand the strength of material using Young's modulus.	PSO1, PSO2, PSO3	K2
CO-2	Acquire knowledge of thermal behavior of the materials.	PSO1, PSO5	К1
CO-3	Understand theoretical principles of magnetism through the experiments.	PSO1, PSO3, PSO4	K2
CO-4	Acquire knowledge about arc spectrum and applications of laser, Improve the analytical and observation ability in Physics Experiments	PSO1, PSO4, PSO5	K3, K4
CO-5	Promote ethical conduct in scientific research, including the proper handling and reporting of experimental data.	PSO2, PSO5	K5
	K1-Remembering; K2 – Understanding; K3 - App K5 – Evaluating; K6 - Creating	• •	yzing;

Relationship Matrix

Semester	Cour	se Co	de	Title	of th	e Cours	se	Hours	Cı	edit
I	24P0	CPH1	P1			PHYSIC	CS	60		2
				P	RACT	CAL-I				
Course	Pro	ogran	nme (Outcon	nes	Prog	ramme	Specifi	ic Outco	omes
Outcomes			(POs)				(PSOs)		
(COs)	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO
	1	2	3	4	5	1	2	3	4	5
CO-1	2	2	2	3	2	2	2	2	3	2
CO-2	2	2	3	3	3	2	2	3	3	3
CO-3	3	3	3	3	3	3	3	3	3	3
CO-4	3	2	3	3	3	3	2	3	3	3
CO-5	3	3	3	3 3 3 3 3 3 3						3
		STR	ONG	(3), M	EDIUN	I (2) an	d LOW	(1)		

Prepared by Name:

Signature:

Checked by

Semester - I	ELECTRONICS P	24PCPH1P2				
Core P – II			L	Т	P	С
Hrs./Week: 4	Hrs./Semester: 60	Marks :50			4	2

To educate the students in electronics so that they can verify and develop confidence to handle sophisticated equipment.

LO	The learners will be able to
LO-1	Observe the applications of FET and UJT.
LO-2	Study the different applications of operational amplifier circuits.
LO-3	Learn about Combinational Logic Circuits and Sequential Logic Circuits
LO-4	Study the Wien's bridge, Phase shift oscillators
LO-5	Study the D/A Convertors circuits

(Any Eight)

- 1. Construction of relaxation oscillator using UJT / Study of important electrical characteristics of IC741.
- 2. FET Characteristics / V- I Characteristics of different colours of LED.
- 3. Study of attenuation characteristics of Wien's bridge network and design of Wien's bridge oscillator using Op-Amp.
- 4. Study of attenuation characteristics of Phase shift network and design of Phase shift oscillator using Op-Amp.
- 5. Construction of Schmidt trigger circuit using IC 741 for a given hysteresis- application as squarer/ Construction of square wave Triangular wave generator using IC 741
- 6. Construction of a quadrature wave using IC 324 / Construction of pulse generator using the IC 741 application as frequency divider
- Construction of Op-Amp 4 bit Digital to Analog Converter (Binary Weighted and R/2R Ladder type)
- 8. Study of Binary to Gray and Gray to Binary code conversion.
- 9. Study of R-S, clocked R-S and D-Flip flop using NAND gates / Study of Masters slave J-K flip flop.
- Study of J-K, D and T flip flops using IC 7476/7473 / Inverting and Non-Inverting Amplifier using OP-AMP Characteristics.
- 11. Arithmetic operations using IC 7483- 4-bit binary addition.
- 12. Study of Arithmetic logic unit using IC 74181/ BCD Adder

- 13. Construction of Encoder and decoder circuits using ICs / SCR Characteristics
- 14. Study of Half Adder and Full Adder
- 15. Transistor Characteristics/ Characteristics of Opto electronics devices LDR-Photodiode-LED-Photovoltaic cell.

TEXT BOOKS

- 1. Practical Physics, Gupta and Kumar, Pragati Prakasan.
- 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences.
- 3. Electronic Laboratory Primer a design approach, S. Poornachandra, B.Sasikala, Wheeler Publishing, New Delhi.
- 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing.
- 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition

- 1. Advanced Practical Physics, S.P Singh, Pragati Prakasan.
- 2. An advanced course in Practical Physics, D.Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- 4. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd.
- 5. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing.

	Course Outcomes		
CO	Upon completion of this course, students	PSOs	Cognitive
	would have learned to:	Addressed	Level
CO-1	Conduct experiments on applications of	PSO1,	
	UJT, FET. Acquire knowledge about V- I Characteristics of different colours of LED.	PSO3,	TT 4 TT 1
	Understand the characteristics of Wien's	PSO5	K4, K1
	bridge oscillator and Phase shift using Op- Amp		
CO-2	Acquire knowledge about Schmidt trigger circuits, square wave, and Triangular wave	PSO1,	
	generator. To analyze and study the	PSO3	K2, K4
	Construction and working of a quadrature	1505	
~ ~ ~	wave and pulse generator		
CO-3	Understand the Construction of Op-Amp – 4 bit Digital to Analog Converter and	PSO1,	V1 V0
	Acquire knowledge about the Study of	PSO5	K1, K2
	Binary to Grey code conversion		
CO-4	Acquire knowledge about the Study of flip flops. Understand the Inverting and Non-	PSO1,	
	Inverting Amplifier using OP-AMP	PSO4,	K1, K2
	Characteristics, working of Arithmetic operations using IC 7483 and BCD adder.	PSO5	
CO-5	Acquire knowledge about Construction of	PSO1,	
	Encoder and decoder circuits, SCR	PSO4,	
	characteristics, Transistor characteristics, half adder and full adder and study of	PSO5	K1, K2
	Opto electronics devices	1.000	
	K1-Remembering; K2 – Understanding; K3 - Applyin K5 – Evaluating; K6 - Creating	ng; K4 - Analyz	ing;

Relationship Matrix

Semester I	Semester Course Code I 24PCPH1P2					he Cour 5 PRAC	'se FICALS	Hours 60	s Cr	edit 2
CourseProgramme Outcomes (POs)Programme Specific Outcomes (PSOs)Outcomes(PSOs)							mes			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO-1	2	2	2	3	3	2	2	2	3	3
CO-2	2	2	3	3	3	2	2	3	3	3
CO-3	3	3	3	3	3	3	3	3	3	3
CO-4	3	2	3	3	3	3	2	3	3	3
CO-5	3	3	3	3	3	3	3	3	3	3
		STI	RONG	(3), MI	EDIUM	(2) and	LOW (1	L)		

Prepared by Name:

Checked by

Signature:

Semester - I	PHYSICS OF NANOSCIENCE AND			24PEPH11A				
Elective – IA	TECHNOLOGY			Т	P	C		
Hrs./Week: 4	Hrs./Semester: 60	4			3			

To introduce the students to the basic ideas of nanomaterials and its application in research field.

LO	The learners will be able to
	Physics of Nanoscience and Technology is concerned with the
LO-1	study, creation, manipulation and applications at nanometer
	scale.
LO-2	Provide the basic knowledge about nanoscience and technology.
LO-3	Learn the structures and properties of nanomaterials.
LO-4	Acquire the knowledge about synthesis methods and
LO-4	characterization techniques and its applications.
	Physics of Nanoscience and Technology is concerned with the
LO-5	study, creation, manipulation and applications at nanometer
	scale.

Learning Objectives

UNIT – I FUNDAMENTALS OF NANOSCIENCE AND TECHNOLOGY (12 Hours)

Fundamentals of NANO – Historical Perspective on Nanomaterial and Nanotechnology – Classification of Nanomaterials – Metal and Semiconductor Nanomaterials - 2D, 1D, 0D nanostructured materials -Quantum dots – Quantum wires – Quantum wells - Surface effects of nanomaterials.

UNIT - II PROPERTIES OF NANOMATERIALS (12 Hours)

Physical properties of Nanomaterials: Melting points, specific heat capacity, and lattice constant - Mechanical behavior:Elastic properties – strength - ductility - superplastic behavior - Optical properties: - Surface Plasmon Resonance – Quantum size effects - Electrical properties - Conductivity, Ferroelectrics and dielectrics - Magnetic properties – super para magnetism – Diluted magnetic semiconductor (DMS).

UNIT – III SYNTHESIS AND FABRICATION (12 Hours)

Physical vapour deposition - Chemical vapour deposition - sol-gel – Wet deposition techniques - electrochemical deposition method – Plasma arching - Electrospinning method - ball milling technique - pulsed laser deposition.

UNIT - IV CHARACTERIZATION TECHNIQUES (12 Hours)

Powder X-ray diffraction – X-ray photoelectron spectroscopy (XPS) -UV-visible spectroscopy – Photoluminescence - Scanning electron microscopy (SEM) - Transmission electron microscopy (TEM) - Scanning tunneling microscopy (STM) – Vibrating sample Magnetometer.

UNIT - V APPLICATIONS OF NANOMATERIALS (12 Hours)

Sensors: Nanosensors based on optical and physical properties -Electrochemical sensors – Nano-biosensors. Nano Electronics: Nanobots display screens - Carbon Nanotube Emitters – Photocatalytic application: Air purification, water purification -Medicine: Imaging of cancer cells – photodynamic therapy - Energy: fuel cells - rechargeable batteries supercapacitors - photovoltaics.

TEXT BOOKS

- 1. A textbook of Nanoscience and Nanotechnology, Pradeep T., Tata McGraw-Hill Publishing Co. (2012).
- 2. Principles of Nanoscience and Nanotechnology, M.A. Shah, Tokeer Ahmad, Narosa Publishing House Pvt Ltd., (2010).
- 3. Introduction to Nanoscience and Nanotechnology, K. K. Chattopadhyay and A.N. Banerjee, PHI Learning Pvt. Ltd., New Delhi, (2012).
- 4. Nanostructured Materials and Nanotechnology, Hari Singh Nalwa, Academic Press, (2002).
- 5. Nanotechnology and Nanoelectronics, D.P. Kothari, V. Velmurugan and Rajit Ram Singh, Narosa Publishing House Pvt.Ltd, New Delhi. (2018)

- 1. Nanostructures and Nanomaterials Huozhong Gao Imperial College Press (2004).
- 2. Richard Booker and Earl Boysen, (2005) Nanotechnology, Wiley Publishing Inc. USA
- 3. Nano particles and Nano structured films; Preparation, Characterization and Applications, J.H.Fendler John Wiley and Sons. (2007)
- 4. Textbook of Nanoscience and Nanotechnology, B.S.Murty, et al., Universities Press. (2012)
- 5. The Nanoscope (Encyclopedia of Nanoscience and Nanotechnology), Dr. Parag Diwan and Ashish Bharadwaj (2005) Vol. IV - Nanoelectronics Pentagon Press, New Delhi.

CO	Upon completion of this course,	PSOs	Cognitive					
	students would have learned to:	Addressed	Level					
CO-1	Understand the basic of nanoscience and explore the different types of nanomaterials and should comprehend the surface effects of the nanomaterials.	PSO1, PSO3, PSO4	K1, K2					
CO-2	Explore various physical, mechanical, optical, electrical and magnetic properties nanomaterials.	PSO2, PSO4	K1					
CO-3	Understand the process and mechanism of synthesis and fabrication of nanomaterials.	PSO1, PSO2, PSO3	K2, K3					
CO-4	Analyze the various characterization of Nano-products through diffraction, spectroscopic, microscopic and other techniques.	PSO2, PSO4	K4					
CO-5	Apply the concepts of nanoscience and technology in the field of sensors, robotics, purification of air and water and in the energy devices.	PSO2, PSO3, PSO4	К3					
	K1-Remembering; K2 – Understanding; K3 - Applying; K4 - Analyzing; K5 – Evaluating; K6 - Creating							

Relationship Matrix

Semester	Cour	se Cod	e	Tit	le of the	he Cour	rse	H	ours	Credit
I	24PEPH11A PHYSICS OF NANOSCIENCE AND TECHNOLOGY					ND	60	3		
Course Outcomes	Pro	gramme	e Outco	Outcomes (POs) Programme Specific Outcomes (POs)					comes	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO	PSO	PSO	PSO	PSO
						1	2	3	4	5
CO-1	3	3	3	2	2	3	3	3	2	2
CO-2	3	3	3	2	2	3	3	3	2	3
CO-3	3	3	2	2	3	3	3	2	2	3
CO-4	3	3	3	2	3	3	3	3	2	3
CO-5	3	3	2	2	2	3	3	2	2	3
		STRO	NG (3)	, MED	UM (2)	and L	OW (1) .			•

Prepared by Name:

Signature:

Checked by

Semester - I	PLASMA PHYSICS			24PEPH11B			
Elective – IB			L	Т	P	С	
Hrs./Week: 4	Hrs./Semester: 60	Marks :100	4			3	

An introduction to plasma physics, plasma diagnostics techniques and its application to various generators.

Learning Objectives						
LO	The learners will be able to					
LO-1	Explore the plasma universe by means of in-site and ground-					
	based observations.					
LO-2 Understand the model plasma phenomena in the universe.						
LO-3	Explore the physical processes which occur in the space					
	environment					
LO-4	Develop their understanding of various probe technique for					
	measurement of Plasma parameters.					
LO-5	Relate the possible applications of plasma physics.					

UNIT - I FUNDAMENTAL CONCEPTS OF PLASMA (12 Hours)

Kinetic pressure in a partially ionized - mean free path and collision cross section - Mobility of charged particles - Effect of magnetic field on the mobility of ions and electrons-Thermal conductivity- Effect of magnetic field-Quasi- neutrality of plasma Debye shielding distance - Optical properties of plasma.

UNIT – II MOTION OF CHARGED PARTICLES IN ELECTRIC AND MAGNETIC FIELD (12 Hours)

Particle description of plasma- Motion of charged particle in electrostatic field- Motion of charged particle in uniform magnetic field -Motion of charged particle in electric and magnetic fields- Motion of charged particle inhomogeneous magnetic field - Motion of charged particle in magnetic mirror confinement - motion of an electron in a time varying electric field- Magneto- hydrodynamics - Magneto-hydrodynamic equations – Condition for magneto hydrodynamic behaviour.

UNIT - III PLASMA OSCILLATIONS AND WAVES (12 Hours)

Introduction, theory of simple oscillations - electron oscillation in a plasma – Derivations of plasma oscillations by using Maxwell's equation -Ion oscillation and waves in a magnetic field - thermal effects on plasma oscillations - Landau damping - Hydro magnetic waves - Oscillations in an electron beam.

UNIT - IV PLASMA DIAGNOSTICS TECHNIQUES (12 Hours)

Single probe method - Double probe method - Use of probe technique for measurement of plasma parameters in magnetic field - microwave method - spectroscopic method - -laser as a tool for plasma diagnostics-Xray diagnostics of plasma - acoustic method - conclusion.

UNIT - V APPLICATIONS OF PLASMA PHYSICS (12 Hours)

Magneto hydrodynamic Generator - Basic theory - Principle of Working-Fuel in MHD Generator - Generation of Microwaves Utilizing High Density Plasma - Plasma Diode.

TEXT BOOKS

- 1. Plasma Physics- Plasma State of Matter- S. N.Sen, PragatiPrakashan, Meerut.
- 2. Introduction to Plasma Physics-M. Uman
- Krall, N. A., and A. W. Trivelpiece. Principles of Plasma Physics. Berkeley, CA: San Francisco Press, 1986. ISBN: 9780911302585.Tanenbaum, B. S. Plasma Physics. New York, NY: McGraw-Hill, 1967. ISBN: 9780070628120.
- 4. Goldston, R. J., and P. H. Rutherford. Introduction to Plasma Physics. Philadelphia, PA: IOP Publishing, 1995. ISBN: 9780750301831.
- 5. Hutchinson, I. H. Principles of Plasma Diagnostics. Cambridge, UK: Cambridge University Press, 2005. ISBN: 9780521675741.

- 1. Chen, F. F. Introduction to Plasma Physics. 2nd ed. New York, NY: Springer, 1984. ISBN: 9780306413322.
- 2. Introduction to Plasma Theory-D.R. Nicholson
- Shohet, J. L. The Plasma State. San Diego, CA: Academic Press Inc., 1971. ISBN: 9780126405507.
- 4. Hazeltine, R. D., and F. L. Waelbroeck. The Framework of Plasma Physics. Boulder, CO: Westview Press, 2004. ISBN: 9780813342139.
- 5. Huddlestone, R. H., and S. L. Leonard. Plasma Diagnostic Techniques. San Diego, CA: Academic Press, 1965

Course	Outcomes
--------	----------

CO	Upon completion of this course,	PSOs	Cognitive				
	students would have learned to:	Addressed	Level				
	Understand the collision, cross						
CO-1	section of charged particles and to	PSO1, PSO3	K1, K2				
00-1	able to correlate the magnetic effect	1501,1505	N1 , N2				
	of ion and electrons in plasma state.						
	Understand the plasma and learn						
CO-2	the magneto-hydrodynamics	PSO2, PSO3	K2				
	concepts applied to plasma.						
	Explore the oscillations and waves of						
CO-3	charged particles and thereby apply	PSO1, PSO3	K1, K3				
00-5	the Maxwell's equation to	1501,1505	N1, N3				
	quantitative analysis of plasma.						
CO-4	Analyze the different principle and	PSO2, PSO4	K2, K5				
00-4	techniques to diagnostics of plasma.	1502,1504	K2, K5				
	Learn the possible applications of						
CO-5	plasma by incorporating various	PSO3, PSO4	K4				
00-5	electrical and electronic	1505,1504					
	instruments.						
	K1-Remembering; K2 – Understanding; K3 - Applying; K4 - Analyzing; K5 – Evaluating; K6 - Creating						

Relationship Matrix

Semester	Cour	Course Code Title of the Course				Title of the Course			urs	Credit
I	24PI	EPH11E	3	PL/	ASMA I	PHYSIC	S	6	50	3
Course Outcomes	Pro	gramme	e Outco	Outcomes (POs) Programme Specific Outco (PSOs)				comes		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO	PSO	PSO	PSO	PSO
						1	2	3	4	5
CO-1	3	3	2	1	1	3	3	2	1	1
CO-2	3	3	2	1	1	3	3	2	1	1
CO-3	3	3	2	2	1	3	3	2	2	1
CO-4	3	3	3	2	1	3	3	3	2	1
CO-5	3	3	3	2	1	3	3	3	2	1
		STR	ONG (3), MED	IUM (2) and L	OW (1)			

Prepared by Name:

Signature:

Checked by

Semester - I	MATERIALS SCIENCE			24PEPH11C			
Elective – IC			L	Т	P	C	
Hrs./Week: 4	Hrs./Semester: 60	Marks :100	4			3	

This course involves investigating the relationships that exist between processing, structure, property and performance of materials.

	Learning Objectives						
LO	The learners will be able to						
LO-1	Gain knowledge on optoelectronic materials						
LO-2	Learn about ceramic processing and advanced ceramics						
LO-3	Understand the processing and applications of polymeric materials						
LO-4	Gain knowledge on the fabrication of composite materials						
LO-5	Learn about shape memory alloys, metallic glasses and nanomaterials						

UNIT-I OPTOELECTRONIC MATERIALS (12 Hours)

Importance of optical materials – properties: Band gap and lattice matching – optical absorption and emission – charge injection, quasi-Fermi levels and recombination – optical absorption, loss and gain. Optical processes in quantum structures: Inter-band and intra-band transitions Organic semiconductors. Light propagation in materials – Electro-optic effect and modulation, electro-absorption modulation – exciton quenching.

UNIT-II PLASMA PROCESSING (12 Hours)

Ceramic processing: powder processing, milling and sintering – structural ceramics: zirconia, almina, silicon carbide, tungsten carbide – electronic ceramics – refractories – glass and glass ceramics

UNIT-III POLYMERIC MATERIALS (12 Hours)

Polymers and copolymers – molecular weight measurement – synthesis: chain growth polymerization – polymerization techniques – glass transition temperature and its measurement – viscoelasticity – polymer processing techniques – applications: conducting polymers, biopolymers and high temperature polymers.

UNIT-IV COMPOSITE MATERIALS (12 Hours)

Particle reinforced composites – fiber reinforced composites – mechanical behavior – fabrication methods of polymer matrix composites and metal matrix composites – carbon/carbon composites: fabrication and applications.

UNIT-V: NEW MATERIALS (12 Hours)

Shape memory alloys: mechanisms of one-way and two-way shape memory effect, reverse transformation, thermo-elasticity and pseudoelasticity, examples and applications -bulk metallic glass: criteria for glass formation and stability, examples and mechanical behavior - nanomaterials: classification, size effect on structural and functional properties, processing and properties of Nano crystalline materials, single walled and multi walled carbon nanotubes.

TEXT BOOKS

- 1. Jasprit Singh, Electronic and optoelectronic properties of semiconductor structures, Cambridge University Press, 2007
- 2. P. K. Mallick. Fiber-Reinforced Composites. CRC Press, 2008.
- 3. V. Raghavan, 2003, Materials Science and Engineering, 4th Edition, Prentice- Hall India, New Delhi
- 4. G.K. Narula, K.S. Narula and V.K. Gupta, 1988, Materials Science, Tata McGraw-Hill
- 5. M. Arumugam, 2002, Materials Science, 3rd revised Edition, Anuratha Agencies

- 1. B. S. Murty, P. Shankar, B. Raj, B. B. Rath and J. Murday. Textbook of Nanoscience and Nanotechnology. Springer- Verlag, 2012.
- 2. K. Yamauchi, I. Ohkata, K. Tsuchiya and S. Miyazaki (Eds). Shape Memory and Super Elastic Alloys: Technologies and Applications. Wood head Publishing Limited, 2011.
- 3. Lawrence H. VanVlack, 1998. Elements of Materials Science and Engineering, 6th Edition, Second ISE reprint, Addison-Wesley.
- H. Iabch and H. Luth, 2002, Solid State Physics An Introduction to Principles of Materials Science, 2nd Edition, Springer.
- 5. D. Hull & T. W. Clyne, An introduction to composite materials, Cambridge University Press, 2008.

СО	Upon completion of this course,	PSOs	Cognitive					
	students would have learned to:	Addressed	Level					
CO-1	Acquire knowledge on optoelectronic materials	PSO1	K1					
CO-2	Be able to prepare ceramic materials	PSO2, PSO3	K3					
CO-3	Be able to understand the processing and applications of polymeric materials	PSO1, PSO2, PSO4	K2, K3					
CO-4	Be aware of the fabrication of composite materials	PSO1, PSO5	K5					
CO-5	Be knowledgeable of shape memory alloys, metallic glasses and nanomaterials	PSO1, PSO2, PSO3	К1					
	K1-Remembering; K2 – Understanding; K3 - Applying; K4 - Analyzing; K5 – Evaluating; K6 - Creating							

Relationship Matrix

Semester	Cour	se Code	e '	Title o	f the C	ourse	ourse Hours Ci			it		
I	24PI	EPH11C	: M	ATERI	ALS SC	CIENCE 60				3		
Course	Pro	gramme	e Outco	omes (]	POs)	Programme Specific Outcomes						
Outcomes								(PSOs)				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO	PSO	PSO	PSO	PSO		
						1	2	3	4	5		
CO-1	2	3	3	2	2	2	3	3	2	2		
CO-2	2	3	3	2	2	2	3	3	2	2		
CO-3	2	3	2	2	2	2	3	2	2	2		
CO-4	1	3	2	3	2	1	3	2	3	2		
CO-5	2	3	2	2	2	2	3	2	2	2		
	1	STRO	ONG (3), MED	IUM (2) and L	OW (1)	1	1	1		

Prepared by Name:

Checked by

Signature:

Semester - I	BASICS OF DIGITAL	2	24PIPH11			
Elective –II-IDC		L	Т	P	C	
Hrs./Week: 2	Hrs./Semester: 30	Marks :50	2			2

Digital techniques are helpful because it is a lot easier to get an electronic device to switch into one of a number of known states than to accurately reproduce a continuous range of values.

LO	The learners will be able to								
LO-1	Gain a solid understanding of the binary number system and its								
LO-1	significance in digital electronics.								
LO-2	Learn how to convert between decimal and binary representations								
	and vice versa.								
LO-3	Learn about the fundamental logic gates such as AND, OR, NOT,								
LO-5	NAND, NOR, and XOR.								
LO-4	Understand the truth tables and logic expressions associated with								
LO-4	each gate.								
LO-5	Understand the concept of Karnaugh maps and use them for								
LO-3	simplifying logic expressions.								
LO-6	Understand the concept of synchronous and asynchronous								
LO-0	sequential circuits and their applications.								
LO-7	Learn techniques for analyzing digital systems, including state								
LO-7	diagrams, state tables, and state equations.								
	Number and (G. Hause)								

Learning Objectives

UNIT - I Number system (6 Hours)

Binary numbers – Decimal to Binary conversion – Octal numbers – Octal to Binary conversion –Hexadecimal numbers – Hexadecimal to Binary conversions – Binary Arithmetic – 1's complement subtraction – 2's complement subtraction – BCD addition.

UNIT - II Boolean algebra (6 Hours)

Laws of Boolean algebra – De Morgan's theorem – Algebraic simplification of logical expressions – Logic gates – Combinational logic design – Karnaugh map representation of logical functions – K-map simplification using minterm (2, 3 and 4 variables) – K-map simplification using max terms (2, 3 and 4 variables).

UNIT- III Combinational circuits (6 Hours)

Half adder – Full adder – Half subtractor – Full subtractor – Multiplexer – Demultiplexer – Encoder – Decimal to BCD encoder – Decoder – BCD to seven segment decoder – Application of combinational circuits .

UNIT - IV Sequential circuits (6 Hours)

Sequential circuits – RS flip flop using NOR gates – clocked RS flip flop – D flipflop – JK flip flop – Master Slave JK flip flop – T flip flop – Register and shift register – Types of registers – Application of sequential circuits.

UNIT - V Counters and Converters and Logic families (6 Hours)

Counters – asynchronous counter – synchronous counter – Decade counter – Application of counters – D/A converter: Ladder type – A/D converter: Counter type – Application of converters – Transistor Transistor Logic (TTL).

TEXT BOOKS

- 1. V. Vijayendran, Digital fundamentals. S. Viswanathan Printers and Publishers Pvt. Ltd., (2009).
- 2. Virendra Kumar, Digital electronics, New Age International Publishers (2007).
- 3. R. Muthusubramanian, Salivahanan, Basic Electrical and Electronics Engineering, Tata MCGraw Hill Education Pvt. Ltd., (2011).

- 1. Avinashi Kapoor and L. K. Maheswari, Digital Electronics Principles and Practice, Macmillan India Limited (2004).
- 2. D. A. Godse and A.P. Godse, Digital electronics, Technical Publisher, Pune (2008).
- 3. Morris Mano, Digital Logic and Computer Design, Pearson Education (2004).
- 4. Don Leach, Albert Malvino, Digital principles and applications, McGraw-Hill Inc., US (1994).
- 5. P.S. Manoharan, "Digital Electronics and Microprocessors", Charulatha Publications.Chennai (2013).

CO	Upon completion of this course,	PSOs	Cognitive								
	students would have learned to:	Addressed	Level								
CO-1	Understanding of binary number systems, including binary arithmetic operations and conversions between binary, decimal, and hexadecimal representations.	PSO1, PSO3	K2								
CO-2	Understand the principles and characteristics of basic logic gates (AND, OR, NOT, NAND, NOR, XOR) and their truth tables.	PSO1, PSO3	K2								
CO-3	Able to analyze and design combinational logic circuits using logic gates.	PSO1, PSO3,PSO5	K4, K5								
CO-4	Gain knowledge about principles of sequential logic and the behavior of latches, flip-flops, counters, and shift registers.	PSO1, PSO4,PSO5	K1, K3								
CO-5	Develop problem-solving and critical thinking skills through the analysis and synthesis of digital circuits.	PSO2, PSO4, PSO5	K4, K5								
	K1-Remembering; K2 – Understanding; K3 - Applying; K4 - Analyzing; K5 – Evaluating; K6 - Creating										

Relationship Matrix

Semester	Course Code Title of the Course			Hou	rs C:	redit				
I	24P	IPH11		BASICS OF DIGITAL ELECTRONICS			30		2	
Course Outcomes	Programme Outcomes (POs)				Programme Specific Outcome (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO-1	3	3	2	2	2	3	3	3	3	3
CO-2	3	3	2	2	2	3	3	3	2	3
CO-3	3	3	3	3	2	3	3	3	3	2
CO-4	3	3	2	2	3	3	2	3	2	2
CO-5	3	3	3	3 3 2 3 3 3					3	3
		STR	RONG (3), ME	DIUM	(2) and	LOW (1)		

Prepared by Name:

Checked by

Signature:

Semester – II	QUANTUM MECH	2	24PCPH21				
Core-IV			L	Т	P	C	
Hrs./Week: 5	Hrs./Semester: 75	Marks :100	5			5	

To develop the knowledge about atoms dual nature of particle and wave functions and its applications.

	Learning Objectives					
LO	The learners will be able to					
LO-1	Develop the physical principles and the mathematical					
LO-1	background important to quantum mechanical descriptions.					
LO-2	Describe the propagation of a particle in a simple, one-					
LO-2	dimensional potential.					
	Formulate and solve the Schrodinger's equation to obtain					
LO-3	eigenvectors and energies for particle in a three-dimensional					
	potential.					
	Explain the mathematical formalism and the significance of					
LO-4	constants of motion, and see their relation to fundamental					
	symmetries in nature					
	Discuss the Approximation methods like perturbation theory,					
LO-5	Variational and WKB methods for solving the Schrödinger					
	equation.					

UNIT -I BASIC FORMALISM (15 Hours)

Interpretation of the wave function – Time dependent Schrodinger equation –Time independent Schrodinger equation – Stationary states – Ehrenfest's theorem – Linear vector space – Linear operator – Eigen functions and Eigen Values – Hermitian Operator – Postulates of Quantum Mechanics – Simultaneous measurability of observables – Mathematical proof of Uncertainty relation for one dimensional wave packet.

UNIT - II ONE DIMENSIONAL AND THREE-DIMENSIONAL ENERGY EIGEN VALUE PROBLEMS (15 Hours)

Particle in a box - Square – well potential with rigid walls – Square well potential with finite walls – Square potential barrier – Bloch waves in a periodic potential – Kronig-penny square – well periodic potential – Linear harmonic oscillator: Operator method – Particle moving in a spherically symmetric potential – System of two interacting particles – Hydrogen atom – Rigid rotator

UNIT - III GENERAL FORMALISM (15 Hours)

Dirac notation – Equations of motions – Schrodinger representation – Heisenberg representation – Interaction representation – Coordinate representation – Momentum representation – Unitary transformation – Parity and time reversal – matrix theory of linear harmonic oscillator.

UNIT - IV ANGULAR MOMENTUM (15 Hours)

Eigenvalue spectrum of general angular momentum – Ladder operators and their algebra – Eigen values and matrix representation of J^2 , J_z and J_+ , J_- – Spin angular momentum – Addition of angular momenta – Clebsch Gordan (CG) Coefficients – Calculation of Clebsch Gordan coefficients for $J_1 = \frac{1}{2}$, $J_2 = \frac{1}{2}$.

UNIT - V APPROXIMATION METHODS (15 Hours)

Time independent perturbation theory for non-degenerate energy levels – Degenerate energy levels – Stark effect in Hydrogen atom – Ground and excited state – Variation method – Helium atom – WKB approximation – Connection formulae (no derivation) – WKB quantization – Application to simple harmonic oscillator.

TEXT BOOKS

- P. M. Mathews and K. Venkatesan, A Text book of Quantum Mechanics, 2nd edition(37th Reprint), Tata McGraw-Hill, New Delhi, 2010.
- 2. G. Aruldhas, Quantum Mechanics, 2nd edition, Prentice Hall of India, New Delhi, 2009.
- 3. David J Griffiths, Introduction to Quantum Mechanics. 4th edition, Pearson, 2011.
- SL Gupta and ID Gupta, Advanced Quantum Theory and Fields, 1st Edition, S.Chand& Co., New Delhi, 1982.
- 5. A. Ghatak and S. Lokanathan, Quantum Mechanics: Theory and Applications, 4thEdition, Macmillan, India, 1984.

- 1. E. Merzbacher, Quantum Mechanics, 2nd Edition, John Wiley and Sons, New York, 1970.
- 2. V. K. Thankappan, Quantum Mechanics, 2nd Edition, Wiley Eastern Ltd, New Delhi, 1985.
- 3. L. D. Landau and E. M. Lifshitz, Quantum Mechanics, 1st edition, Pergomon Press, Oxford, 1976.
- 4. S. N. Biswas, Quantum Mechanics, Books and Allied Ltd., Kolkata, 1999.
- 5. V. Devanathan, Quantum Mechanics, 2nd edition, Alpha Science International Ltd, Oxford, 2011.

CO	Upon completion of this course,	PSOs	Cognitive	
	students would have learned to:	Addressed	Level	
CO-1	Demonstrates a clear understanding of the basic postulates of quantum mechanics which serve to formalize the rules of quantum Mechanics	PSO1, PSO3, PSO4	K1, K5	
CO-2	Is able to apply and analyze the Schrodinger equation to solve one dimensional problems and three dimensional problems	PSO1, PSO3	K3, K4	
CO-3	Can discuss the various representations, space time symmetries and formulations of time evolution	PSO1, PSO2, PSO5	К1	
CO-4	Can formulate and analyze the approximation methods for various quantum mechanical problems	PSO2, PSO5	K4, K5	
CO-5	To apply non-commutative algebra for topics such as angular and spin angular momentum and hence explain spectral line splitting.	PSO2, PSO3, PSO4	K3, K4	

Relationship Matrix

Semester	Course Code			Tit	le of t	he Cou	irse	Hou	rs C:	Credit	
II	24P	CPH2	21 0	QUANT	UM MU	IECHAI	NICS - I	75		5	
Course Outcomes	Pro	ogran	ramme Outcomes Programme Specific Outcomes (POs) (PSOs)					c Outc	omes		
(COs)	PO	PO	PO	PO	PO	PSO	PSO	PSO	PSO	PSO	
	1	2	3	4	5	1	2	3	4	5	
CO-1	3	3	3	3	3	3	3	3	3	3	
CO-2	3	3	3	3	3	3	3	3	3	3	
CO-3	2	3	3	2	3	2	3	3	2	3	
CO-4	3	3	3	3	3	3	3	3	3	3	
CO-5	3	3	3	2	3	3	3	3	2	3	
		ST	RONG	G (3), M	IEDIU	M (2) a:	nd LOW	' (1)			

Prepared by Name:

Checked by

Signature:

Semester – II	STATISTICAL MI	24PCPH22						
Core-V			L	Т	P	С		
Hrs./Week: 5	Hrs./Semester: 75	Marks :100	5			4		

To expose the students to use the probability method in Statistical Mechanics by extending many-body systems.

LO	The learners will be able to
LO-1	Acquire the knowledge of thermodynamic potentials and to understand phase transition in thermodynamics
LO-2	Identify the relationship between statistic and thermodynamic quantities
LO-3	Comprehend the concept of partition function, canonical and grand canonical ensembles
LO-4	Grasp the fundamental knowledge about the three types of statistics
LO-5	Get in depth knowledge about phase transitions and fluctuation of thermodynamic properties that vary with time

Learning Objectives

UNIT -I PHASE TRANSITIONS (15 Hours)

Thermodynamic potentials - Phase Equilibrium - Gibb's phase rule -Phase transitions and Ehrenfest's classifications –Third law of Thermodynamics. Order parameters – Landau's theory of phase transition - Critical indices - Scale transformations and dimensional analysis.

UNIT -II STATISTICAL MECHANICS AND THERMODYNAMICS (15 Hours)

Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space – Entropy - Connection between statistics and thermodynamics – Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.

UNIT - III CANONICAL AND GRAND CANONICAL ENSEMBLES (15 Hours)

Trajectories and density of states - Liouville's theorem - Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.

UNIT- IV CLASSICAL AND QUANTUM STATISTICS (15 Hours)

Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Maxwell-Boltzmann statistics - Fermi-Dirac statistics - Ideal Fermi gas - Degeneracy - Bose-Einstein statistics - Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation.

UNIT - V REAL GAS, ISING MODEL AND FLUCTUATIONS (15 Hours)

Cluster expansion for a classical gas - Virial equation of state -Calculation of the first Virial coefficient in the cluster expansion - Ising model - Mean-field theories of the Ising model in three, two and one dimensions - Correlation of space-time dependent fluctuations -Fluctuations and transport phenomena - Brownian motion - Langevin's theory.

TEXT BOOKS

- 1. S. K. Sinha, 1990, Statistical Mechanics, Tata McGraw Hill, New Delhi.
- 2. B. K. Agarwal and M. Eisner, 1998, Statistical Mechanics, Second Edition New Age International, New Delhi.
- 3. J. K. Bhattacharjee, 1996, Statistical Mechanics: An Introductory Text, Allied Publication, New Delhi.
- 4. F. Reif, 1965, Fundamentals of Statistical and Thermal Physics, McGraw -Hill, New York.
- 5. M. K. Zemansky, 1968, Heat and Thermodynamics, 5th edition, McGraw-Hill New York.

- 1. R. K. Pathria, 1996, Statistical Mechanics, 2nd edition, Butter Worth Heinemann, New Delhi.
- 2. L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, Pergamon Press, Oxford.
- 3. K. Huang, 2002, Statistical Mechanics, Taylor and Francis, London
- 4. W. Greiner, L. Neiseand H.Stoecker, Thermodynamics and Statistical Mechanics, Springer Verlang, New York.
- 5. A. B. Gupta, H. Roy, 2002, Thermal Physics, Books and Allied, Kolkata.

CO	Upon completion of this course, students	PSOs	Cognitive
	would have learned to:	Addressed	Level
CO-	To examine and elaborate the effect of	PSO1,	
1	changes in thermodynamic quantities on the	PSO3	K5
	states of matter during phase transition		
CO2	To analyze the macroscopic properties such	PSO1,	
	as pressure, volume, temperature, specific	PSO3,	
	heat, elastic moduli etc. using microscopic	PSO4	K4
	properties like intermolecular forces,		
	chemical bonding, atomicity etc.		
CO-	Differentiate between canonical and grand	PSO1,	
3	canonical ensembles and to interpret the	PSO2,	K1
	relation between thermodynamical quantities	PSO5	K1
	and partition function		
CO-	To recall and apply the different statistical	PSO1,	
4	concepts to analyze the behaviour of ideal	PSO2,	
	Fermi gas and ideal Bose gas and also to	PSO4	K4, K5
	compare and distinguish between the three		
	types of statistics.		
CO-	To discuss and examine the	PSO2,	
5	thermodynamical behaviour of gases under	PSO3,	K3
	fluctuation and also using Ising model	PSO4	
	K1-Remembering; K2 – Understanding; K3 - Applyin K5 – Evaluating; K6 - Creating	ng; K4 - Analyz	zing;

Relationship Matrix

Semester Course Code				Title of the Course				Ηοι	ırs (Credit
II	24P	CPH22	2 S	TATIS	TICAI	MECH	ANICS	7	5	4
CourseProgrammOutcomes(H)			me O (POs)	utcom	es	Programme Specific Outco (PSOs)				omes
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO-1	3	3	3	2	3	3	3	3	2	2
CO-2	3	3	3	3	3	3	3	3	2	3
CO-3	3	3	3	3	2	3	3	3	3	2
CO-4	3	3	3	3	3	3	3	3	2	2
CO-5	3	3	3	2	3	3	3	3	3	2
		STR	ONG (3), ME	DIUM	[(2) and	i low (1).		

Prepared by Name:

Checked by

Head of the Department

Signature:

Semester – II	GENERAL PHYSICS P	24PCPH2P1					
Core-P-III			L	Т	P	C	
Hrs./Week: 4	Hrs./Semester: 60	Marks :50			4	2	

The course aims at exposing the students to the intricacies of handling sophisticated equipments and analysis of results.

LO	The learners will be able to
LO-1	Understand the concept of mechanical behavior of materials and calculation of
	same using appropriate equations.
LO-2	Understand the concept of Young's modulus and Poisson's ratio.
LO-3	Analyze the optical and electrical properties of materials.
LO-4	Understand the principle of Quincke's method for measuring susceptibility.
LO-5	Calculate the charge-to-mass ratio of electrons using experimental data.

Learning Objectives

(Any Eight)

- 1. Measurement of Susceptibility of liquid Quincke's method
- 2. B-H curve using CRO
- 3. Arc spectrum: Copper
- 4. Determination of Thickness of thin film. Michelson Interferometer
- 5. Determination of Numerical Apertures and Acceptance angle of optical fibers using Laser Source.
- 6. Interpretation of vibrational spectra of a given material
- 7. Mutual inductance coupling co efficient as a function of distance and angle.
- 8. Determination of I-V Characteristics and efficiency of solar cell
- 9. GM counter Absorption coefficient Maximum range of β rays
- 10. Thermal conductivity of the material Forbe's method
- 11. Particle size determination using He-Ne Laser.
- 12. Determine the mechanical properties of solids and find various hardness parameters
- 13. Calculate the charge of an electron by the method of dispersion
- 14. Measurement of magnetic susceptibility Guoy's method
- 15. Determination of refractive index of liquids using diode laser/He– Ne laser.

TEXT BOOKS

- 1. Practical Physics, Gupta and Kumar, PragatiPrakasan
- 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences

- 1. An advanced course in Practical Physics, D.Chattopadhayay, C.R Rakshit, New Central Book Agency Pvt. Ltd
- 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan
- 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt. Ltd

CO	Upon completion of this course,	PSOs	Cognitive										
	students would have learned to:	Addressed	Level										
CO-1	Understand the strength of material	PSO1, PSO3,	K2										
	using Young's modulus	PSO5											
CO-2	Acquire knowledge of thermal	PSO1, PSO4,	K1										
	behavior of the materials	PSO5	KI (
CO-3	Understand theoretical principles of												
	dielectrics through the experiments.	PSO2, PSO4,											
	Acquire knowledge about the	PSO5	K2, K3										
	applications of laser												
CO-4	Improve the analytical and												
	observation ability in Physics												
	Experiments, Apply skills in designing	PSO3, PSO4,	K1, K5										
	and planning experiments to	PSO5	N1 , N 5										
	investigate specific physical												
	phenomena.												
CO-5	Foster curiosity and a spirit of												
	scientific inquiry through hands-on	PSO3, PSO5	K4, K5										
	experimentation.												
	K1-Remembering; K2 – Understanding; K3 - K5 – Evaluating; K6 - Cre		lyzing;										
<u> </u>	NJ - Evaluating; NO - Ch	caung											

Relationship Matrix

Semester	ter Course Code Title of the Course			Hou	rs C	redit				
II	24PC	PH2P1		GENE	CRAL P	HYSIC	CS	60		2
				PRA	CTICA	<u>LS - I</u>	Ι			
Course	Pro	gramme	e Outco	omes (]	POs)		Progra		-	C
Outcomes							Outc	omes (PSOs)	
(COs)	PO1	PO2	PO3	PO4	PO5	PS	PSO	PSO	PSO	PSO
						01	2	3	4	5
CO-1	2	2	2	3	2	2	2	2	3	2
CO-2	2	2	3	3	3	2	2	3	3	3
CO-3	3	3	3	3	3	3	3	3	3	3
CO-4	3	2	3	3	3	3	2	3	3	3
CO-5	3	3	3	3	3	3	3	3	3	3
		STRO	NG (3),	MEDIU	JM (2)	and L	OW (1)			

Prepared by Name:

Checked by

Signature:

Head of the Department

Semester – II	ADVANCED ELEC	24PCPH2P2					
Core-P-IV	PRACTIC	L	Т	P	C		
Hrs./Week: 4	Hrs./Semester: 60			4	2		

The course aims at exposing the students to the intricacies of handling sophisticated equipments, designing electronic circuits, trouble shooting and analysis of results

LO	The learners will be able to
LO-1	Study the different applications of operational amplifier
	circuits.
LO-2	Learn about Combinational Logic Circuits and Sequential Logic Circuits
LO-3	Study the BCD to seven segment display circuits
LO-4	Study the various types of oscillators
LO-5	Learn about the different types of counters

Learning Objectives

(Any Eight)

- 1. Determination of I-V Characteristics and efficiency of solar cell/ IC 7490 as scalar and seven segment display using IC7447
- 2. Solving simultaneous equations IC 741 / IC LM324 / Construction of series voltage regulator
- 3. Op-Amp –Active filters: Low pass, High pass and Band pass filters (Second Order) Batter worth filter / Construction of Current to Voltage and Voltage to Current Conversion using IC 741.
- 4. Construction of second order butterworth multiple feedback narrow band pass filter/Realization of analog to digital converter (ADC) using 4-bit DAC and synchronous counter IC74193/ IC 741
- Construction of square wave generator using IC 555 Study of VCO/ Construction of Schmidt trigger circuit using IC555 for a given hysteresis – Application as squarer
- 6. Construction of pulse generator using the IC 555 Application as frequency divider/BCD to Excess- 3 and Excess 3 to BCD code conversion
- 7. Study of binary up / down counters IC 7476 / IC7473

- 8. Shift register / Ring counter and Johnson counter- IC 7476/IC 7474
- Study of synchronous parallel 4-bit binary up/down counter using IC 74193
- 10. Study of asynchronous parallel 4-bit binary up/down counter using IC 74193
- 11. Study of Modulus counter
- 12. Construction of Multiplexer and Demultiplexer using ICs.
- 13. Construction of series voltage regulator
- 14. Arithmetic operations using IC 7483- 4-bit binary subtraction (1's complement).
- 15. Oscillators (Hartley and Colpitts)

TEXT BOOKS

- 1. Practical Physics, Gupta and Kumar, PragatiPrakasan
- 2. Kit Developed for doing experiments in Physics- Instruction manual, R.Srinivasan K.R Priolkar, Indian Academy of Sciences
- 3. Op-Amp and linear integrated circuit, Ramakanth A Gaykwad, Eastern Economy Edition.
- 4. Electronic lab manual Vol I, K ANavas, Rajath Publishing
- 5. Electronic lab manual Vol II, K ANavas, PHI eastern Economy Edition

- 1. An advanced course in Practical Physics, D.Chattopadhayay, C.RRakshit, New Central Book Agency Pvt. Ltd
- 2. Advanced Practical Physics, S.P Singh, PragatiPrakasan
- 3. A course on experiment with He-Ne Laser, R.S. Sirohi, John Wiley & Sons (Asia) Pvt.ltd
- 4. Electronic lab manual Vol II, Kuriachan T.D, Syam Mohan, Ayodhya Publishing
- 5. Electronic Laboratory Primer a design approach, S. Poornachandra, B.Sasikala, Wheeler Publishing, New Delhi.

CO	CO Statement	PSOs	Cognitive
No.		Mapped	Level
CO-1	Understand the I-V Characteristics and efficiency of solar cell. Acquire knowledge about seven segment display using IC7447. Acquire knowledge about the Solving of simultaneous equations using IC 741 and its experiments	PSO1, PSO4, PSO5	K1, K2,K4
CO-2	Understand Study the Construction of square wave generator using IC 555 Acquire knowledge about Construction of Schmidt trigger circuits, pulse generator using the IC 555. Understand the concepts of BCD to Excess- 3 and Excess 3 to BCD code conversion. Analyze the applications of binary up / down counters. Understand the concepts of Shift register, Ring counter and Johnson counter	PSO2, PSO3	K1, K2
CO-3	Acquire knowledge about the pulse generator using the IC 555 – Application as frequency divider. Understand the concepts of BCD to Excess- 3 and Excess 3 to BCD code conversion. Analyze the applications of binary up / down counters. Understand the concepts of Shift register, Ring counter and Johnson counter	PSO1, PSO3, PSO5	K1, K2
CO-4	Analyze the applications of synchronous parallel 4-bit binary up/down counters Understand the concepts involved in the asynchronous parallel 4-bit binary up/down counter. Analyze the applications of Modulus counter. Acquire knowledge about the Construction of Multiplexer and Demultiplexer	PSO2, PSO4	K1, K2, K4
CO-5	Acquire the knowledge about the series voltage regulator. Undestand the concepts of Arithmetic operations. Improve the analytical and observation ability in Physics Experiments. Acquire knowledge about the Hartley and Colpitt Oscillators	PSO1, PSO2, PSO5	K5, K2
K	I-Remembering; K2 – Understanding; K3 - Apply	-	nalyzing;
	K5 – Evaluating; K6 - Creating	s	

Semester	ster Course Code Title of the Course				Hours	Cı	edit					
II	24P0	CPH2P2	AD	ADVANCED ELECTRONICS				60		2		
				Pl	RACTI	CAL						
Course	Prog	gramme	outc	omes (POs)	Prog	ramme	Specifi	c Outco	omes		
Outcomes								(PSOs)				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO-1	2	2	2	3	3	2	2	2	3	3		
CO-2	2	2	3	3	3	2	2	3	3	3		
CO-3	3	3	3	3	3	3	3	3	3	3		
CO-4	3	2	3	3	3	3	2	3	3	3		
CO-5	3	3	3	3 3 3 3 3 3 3						3		
		STR	ONG (3	3), MEI	DIUM (2) and 1	LOW (1)	•				

Relationship Matrix

Prepared by Name:

Signature:

Checked by Head of the Department

Semester – II	ADVANCED MATH	24PEPH21A						
Elective-IIIA	PHYSIC	L	Т	P	C			
Hrs./Week: 4	Hrs./Semester: 60	Marks :100	4			3		

Improving student comfort with some mathematical techniques and highlighting the applications of mathematical methods to physics systems.

LO	The learners will be able to
	To educate and involve students in the higher level of
LO-1	mathematics and mathematical methods relevant and
	applicable to Physics.
LO-2	Grasp knowledge to evaluating the discrete and continuous
LO-2	groups.
LO-3	Develop problem-solving skills using a variety of special unitary
	groups.
LO-4	Discriminate the solution of tensors and tensor calculus
LO-4	problems.
LO-5	Competently use tensor calculus as a tool in the field of applied
10-3	sciences and related fields.

Learning Objectives

UNIT - I DISCRETE GROUPS (15 Hours)

Definition of a group, subgroup, class, Homomorphism and isomorphism between two groups. Representation of a group, unitary representations, reducible and irreducible representations Schur's lemmas, orthogonality theorem, character table, reduction of Kronecker product of representations, criterion for irreducibility of a representation.

UNIT – II CONTINUOUS GROUPS (15 Hours)

Infinitesimal generators, Lie algebra; Rotation group, representations of the Lie algebra of the rotation group, representation of the rotation group, D-matrices and their basic properties. Addition of two angular momenta and C.G. coefficients, Wigner-Eckart theorem.

UNIT - III SPECIAL UNITARY GROUPS (15 Hours)

Definition of unitary, unimodular groups SU(2) and SU(3). Lie algebra of SU(2). Relation between SU(2) and rotation group. Lie algebra of SU(3)-Gellmann's matrices. Cartan form of the SU(3). Lie algebra, roots and root diagram for SU(3). Weights and their properties, weight diagrams for the

irreducible representations 3.3^{*-} , 6,6 8, 10 and 10 of SU(3). Direct product of two SU(3) representations, Young tableaux method of decomposition of products of IR's illustrations with the representations of dim<10. C.G.coefficients for 3 x 3* and 3 x 6 representations.

UNIT - IV TENSORS (15 Hours)

Cartesian vectors and tensors, Four vector in special relativitity, vectors and tensors under Lorentz transformations, Illustration from physics. Vectors and tensors under general co-ordinate transformations, contravariant and covariant vectors and tensors, mixed tensors; tensor algebra, addition, subtraction, direct product of tensors, quotient theorem, symmetric and antisymmetric tensors.

UNIT - V TENSOR CALCULUS (15 Hours)

Parallel transport, covariant derivative, affine connection. Metric tensor. Expression for Christoffel symbols in terms of and its derivatives (assuming D g = 0. Curvature tensor, Ricci tensor and Einstein tensor. Bianchi identities, Schwarzschild solution to the Einstein equation G=0.

TEXT BOOKS

- 1. A.W.Joshi, Group Theory for Physicists
- 2. D.B.Lichtenberg, Unitary Symmetry and Elementary Particles
- 3. E.Butkov, Mathematical Physics
- 4. J.V.Narlikar, General Relativity & Cosmology
- 5. R. Geroch, Mathematical Physics, The University of Chicago press (1985).

- 1. M.Hamermesh Group Theory
- 2. M.E.Rose: Elementary Theory of Angular Momentum
- 3. Georgi : Lie Groups for Physicists
- 4. E.A.Lord: Tensors, Relativity & Cosmology
- 5. P. Szekeres, A course in modern mathematical physics: Groups, Hilbert spaces and differential geometry, Cambridge University Press.

CO	Upon completion of this course,	PSOs	Cognitive
	students would have learned to:	Addressed	Level
CO-1	Gained knowledge of both discrete and		
	continuous groups	PSO1,	K1
		PSO3	
CO-2	Apply various important theorems in	PSO1,	
	group theory	PSO2,	K3
		PSO3	
CO-3	Construct group multiplication table,		
	character table relevant to important	PSO3,	K5
	branches of physics.	PSO4	
CO-4	Equipped to solve problems in tensors	PSO1,	
		PSO3	K4, K5
CO-5	Developed skills to apply group theory	PSO3,	
	and tensors to peruse research	PSO4,	K2, K3
		PSO5	
	K1-Remembering; K2 – Understanding; K3 - Ap		lyzing;
	K5 – Evaluating; K6 - Creat	ing	

Relationship Matrix

Semester	Code					Нот		Credit		
II	24PEP	H21A	AD	VANC	ED MA PHYS	THEMA SICS	ATICAL	6	D	4
Course	Progr	amme	Outco	mes (I	POs)	Prog	ramme	Specifi	c Outco	omes
Outcomes								(PSOs)		
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO-1	3	3	2	1	1	3	3	2	1	1
CO-2	3	3	2	1	1	3	3	2	1	2
CO-3	3	3	2	1	2	3	3	2	1	2
CO-4	3	3	2	2	1	3	3	2	2	2
CO-5	3	3	3 2 2 2				3	2	2	2
	1	STR	ONG (3), ME	DIUM	(2) and	LOW (1)		1	1

Prepared by Name:

Checked by

Signature:

Head of the Department

Semester – II	MEDICAL PH	24PEPH21B						
Elective-IIIB			L	Т	P	С		
Hrs./Week: 4	Hrs./Semester : 60	Marks :100	4			3		

To educate the students with the fundamental ideas of Physics in medical applications.

LO	The learners will be able to
LO-1	Understand the major applications of Physics to Medicine
LO-2	Study the aid of different medical devices such as X-ray machines, gamma camera, accelerator and nuclear magnetic resonance.
LO-3	Outline the principles of Physics of different medical radiation devices and their modern advances, especially in medical radiation therapy and different applications in medical physics.
LO-4	Introduce the ideas of Radiography.
LO-5	Form a good base for further studies like research.

Learning Objectives

UNIT - I X-RAYS AND TRANSDUCERS (12 Hours)

Electromagnetic Spectrum – Production of X-Rays – X-Ray Spectrum – Bremsstrahlung – Characteristic X-Ray – X-Ray Tubes – Coolidge Tube – X-Ray Tube Design – Thermistors – photo electric transducers – Photo voltaic cells – photo emissive cells –Photoconductive cells– piezoelectric transducer

UNIT - II BLOOD PRESSURE MEASUREMENTS (12 Hours)

Introduction –sphygmomanometer – Measurement of heart rate – basic principles of electrocardiogram (ECG) –Basic principles of electroneurography (ENG) – Basic principles of magnetic resonance imaging (MRI).

UNIT - III RADIATION PHYSICS (12 Hours)

Radiation Units – Exposure – Absorbed Dose – Rad to Gray – Kera Relative Biological Effectiveness –Effective Dose – Sievert (Sv) – Inverse Square Law – Interaction of radiation with Matter – Linear Attenuation Coefficient – Radiation Detectors –Thimble Chamber – Condenser Chambers – Geiger Counter – Scintillation Counter

UNIT - IV MEDICAL IMAGING PHYSICS (12Hours)

Radiological Imaging – Radiography – Filters – Grids – Cassette – X-Ray Film – Film processing – Fluoroscopy – Computed Tomography Scanner – Principal Function – Display – Mammography – Ultrasound Imaging – Magnetic Resonance Imaging – Thyroid Uptake System – Gamma Camera (Only Principle, Function and display)

UNIT - V RADIATION PROTECTION (12 Hours)

Principles of Radiation Protection – Protective Materials – Radiation Effects – Somatic – Genetic Stochastic and Deterministic Effect – Personal Monitoring Devices – TLD Film Badge – Pocket Dosimeter

TEXTBOOKS

- 1. Dr.K.Thayalan *"Basic Radiological Physics, Jayapee Brothers Medical Publishing Pvt. Ltd. New Delhi, 2003.*
- 2. Curry, Dowdey and Murry, *Christensen's Physics of Diagnostic Radiology:* -*Lippincot*Williams and Wilkins, 1990.
- 3. FM Khan, *Physics of Radiation Therapy*, William and Wilkins, 3rd ed, 2003.
- 4. D. J. Dewhurst, An Introduction to Biomedical Instrumentation, 1st ed, Elsevier Science, 2014
- 5. R.S. Khandpur, *Hand Book of Biomedical Instrumentations*, 1st ed, TMG, New Delhi, 2005.

- 1. Muhammad Maqbool, An Introduction to Medical Physics, 1st ed, Springer International Publishing, 2017.
- 2. Daniel Jirák, František Vítek, Basics of Medical Physics, 1st ed, Charles University, Karolinum Press, 2018
- 3. Anders Brahme, *Comprehensive Biomedical Physics*, Volume 1, 1st ed, Elsevier Science, 2014.
- 4. K. Venkata Ram, *Bio-Medical Electronics and Instrumentation*, 1st ed, Galgotia Publications, New Delhi, 2001.
- 5. John R. Cameron and James G. Skofronick, 2009, Medical Physics, John Wiley Interscience Publication, Canada, 2nd edition.

СО	Upon completion of this course,	PSOs	Cognitive
	students would have learned to:	Addressed	Level
CO-1	Learn the fundamentals, production and applications of X-rays.	PSO1, PSO4	K1
CO-2	Understand the basics of blood pressure measurements. Learn about sphygmomanometer, EGC, ENG and basic principles of MRI.	PSO2, PSO3	K2
CO-3	Apply knowledge on Radiation Physics	PSO1, PSO4	K3
CO-4	Analyze Radiological imaging and filters	PSO4	K4
CO-5	Assess the principles of radiation protection	PSO2, PSO4	K5
	K1-Remembering; K2 – Understanding; K3 - Ap K5 – Evaluating; K6 - Creat		yzing;

Relationship Matrix

Semester	ter Course Code			Title of the Course				Hours	Credit		
II	24PEP	H21B		MEDI	CAL P	HYSICS		4		3	
Course	Progra	amme	Outcor	nes (P	LOs)	Prog	ramme	Specifi	c Outco	tcomes	
Outcomes								(PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO-1	3	3	3	1	1	3	3	3	1	1	
CO-2	3	3	3	2	1	3	3	3	2	1	
CO-3	3	3	3	2	1	3	3	3	2	1	
CO-4	3	3	3	2	1	3	3	3	2	1	
CO-5	3	3	3	1	1	3	3	3	1	1	
		STR	ONG (3	B), MEI	DIUM (2) and [LOW (1)		1		

Prepared by Name:

Checked by Head of the Department

Signature:

Semester – II	CHARACTERIZATON	24PEPH21C				
Elective-IIIC			L	Т	P	C
Hrs./Week: 4	Hrs./Semester: 60	Marks :100	4			3

To introduce the students to the fundamental ideas of nanomaterials and its various characterization techniques.

LO	The learners will be able to							
LO-1	Make the students learn some important thermal analysis							
LO-1	techniques namely TGA, DTA, DSC and TMA.							
	Make the students understand the theory of image formation							
LO-2	in an optical microscope and to introduce other specialized							
	microscopic techniques.							
	Make the students learn and understand the principle of							
LO-3	working of electron microscopes and scanning probe							
	microscopes.							
	Make the students understand some important electrical and							
LO-4	optical characterization techniques for semiconducting							
	materials.							
LO-5	Introduce the students the basics of x-ray diffraction							
LO-3	techniques and some important spectroscopic techniques.							

Learning Objectives

UNIT - I THERMAL ANALYSIS (12 Hours)

Introduction – thermogravimetric analysis (TGA) – instrumentation – determination of weight loss and decomposition products – differential thermal analysis (DTA)- cooling curves – differential scanning calorimetry (DSC) – instrumentation – specific heat capacity measurements – determination of thermomechanical parameters.

UNIT - II MICROSCOPIC METHODS (12 Hours)

Optical Microscopy: optical microscopy techniques – Bright field optical microscopy – Dark field optical microscopy – Dispersion staining microscopy – differential interference contrast microscopy - fluorescence microscopy - confocal microscopy - - digital holographic microscopy quantitative metallography - image analyzer.

UNIT – III ELECTRON MICROSCOPY AND SCANNING PROBE MICROSCOPY (12 Hours)

SEM, EDAX, EPMA, TEM: working principle and Instrumentation – sample preparation, processing and analysis- Scanning tunnelingmicroscopy (STEM) - Atomic force microscopy (AFM) - Scanning new field optical microscopy.

UNIT- IV ELECTRICAL METHODS AND OPTICAL CHARACTERIZATION (12 Hours)

Two probe and four probe methods- van der Pauw method – Hall probe and measurement – scattering mechanism – C-V characteristics – Schottky barrier capacitance – electrochemical C-V profiling – limitations. Photoluminescence–instrumentation–electroluminescence – instrumentation – Applications.

UNIT- V X-RAY AND SPECTROSCOPIC METHODS (12 Hours)

Principles and instrumentation for UV-Vis-IR, FTIR spectroscopy, Raman spectroscopy, ESR, NMR, NQR, XPS, AES and SIMS-proton induced X-ray Emission spectroscopy (PIXE) – Application - Powder diffraction -Powder diffractometer -interpretation of diffraction patterns - indexing phase identification - residual stress analysis - Particle size, texture studies **TEXTBOOKS**

- 1. R. A. Stradling and P. C. Klipstain. Growth and Characterization of semiconductors. Adam Hilger, Bristol, 1990.
- 2. J. A. Belk. Electron microscopy and microanalysis of crystalline materials. Applied Science Publishers, London, 1979.
- 3. Lawrence E. Murr. Electron and Ion microscopy and Microanalysis principles and Applications. Marcel Dekker Inc., New York, 1991
- 4. D. Kealey and P. J. Haines. Analytical Chemistry. Viva Books Private Limited, New Delhi, 2002.
- 5. Li, Lin, Ashok Kumar Materials Characterization Techniques Sam Zhang; CRC Press,(2008).

- 1. Cullity, B.D., and Stock, R.S., "Elements of X-Ray Diffraction", Prentice-Hall, (2001).
- 2. Murphy, Douglas B, Fundamentals of Light Microscopy and Electronic Imaging, Wiley-Liss, Inc. USA, (2001).
- Tyagi, A.K., Roy, Mainak, Kulshreshtha, S.K., and Banerjee, S., Advanced Techniques for Materials Characterization, Materials Science Foundations (monograph series), Volumes 49 – 51, (2009).Volumes 49 – 51, (2009).
- 4. Wendlandt, W.W., Thermal Analysis, John Wiley & Sons, (1986).
- 5. Wachtman, J.B., Kalman, Z.H., Characterization of Materials, Butterworth Heinemann, (1993).

CO	Upon completion of this course,	PSOs	Cognitive
	students would have learned to:	Addressed	Level
CO-1	Describe the TGA, DTA, DSC and TMA		
	thermal analysis techniques and make	PSO1, PSO4	K1, K3
	interpretation of the results.		
CO-2	The concept of image formation in		
	Optical microscope, developments in	PSO2, PSO5	K2
	other specialized microscopes and	FS02, FS03	KZ
	their applications.		
CO-3	The working principle and operation of	PSO3, PSO5	K2, K3
	SEM, TEM, STM and AFM.	1505,1505	K2, K5
CO-4	Understood Hall measurement, four –		
	probe resistivity measurement, C-V, I-		
	V, Electrochemical,	PSO2, PSO4	K3, K4
	Photoluminescence and	1002,1001	100, 11 l
	electroluminescence experimental		
	techniques with necessary theory.		
CO-5	The theory and experimental		
	procedure for x- ray diffraction and	PSO1, PSO4	K4, K5
	some important spectroscopic		11, 110
	techniques and their applications.		
	K1-Remembering; K2 – Understanding; K3 - A K5 – Evaluating; K6 - Cre		lyzing;

Relationship Matrix

Semester	Cou Co			Title	of the	e Cours	e	Ho	urs	Credit			
II	24PEPH21C		С		CTERI IATER	IZATON	OF	6	0	3			
Course Outcomes	Prog	ramme	Outco	mes (I	POs)	Prog	ramme	Specifi (PSOs)	c Outco	omes			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5			
CO-1	3	3	3	2	2	3	3	3	2	2			
CO-2	3	3	3	2	2	3	3	3	2	2			
CO-3	3	3	2	2	2	3	3	2	2	2			
CO-4	2	2	2	3	2	2	2	2	2 3 2				
CO-5	2	2	2	2	2	2	2	2	2	2			
		STR	ONG (3), MEI	DIUM	2) and	LOW (1)						

Prepared by Name:

Checked by

Signature:

Head of the Department

Semester – II	SOLAR ENERGY U	2	24PIPH21				
Elective-IV- IDC-II			L	Т	P	C	
Hrs./Week: 2	Hrs./Semester: 30	Marks :50	2			2	

To introduce the students to the fundamentals of solar energy and their various applications.

LO	The learners will be able to
LO-1	Impart fundamental aspects of solar energy utilization.
LO-2	Give adequate exposure to solar energy related industries
LO-3	Harness entrepreneurship skills
LO-4	Understand the different types of solar cells and channelizing
	them to the different sectorsof society
LO-5	Develop an industrialist mindset by utilizing renewable source
	of energy

UNIT - I HEAT TRANSFER & RADIATION ANALYSIS (6 Hours)

Conduction, Convection and Radiation – Solar Radiation at the earth's surface - Determination of solar time – Solar energy measuring instruments.

UNIT - II SOLAR COLLECTORS (6 Hours)

Physical principles of conversion of solar radiation into heat flat plate collectors - General characteristics – Focusing collector systems – Thermal performance evaluation of optical loss.

UNIT - III SOLAR HEATERS (6 Hours)

Types of solar water heater - Solar heating system - Collectors and storage tanks - Solar ponds - Solar cooling systems.

UNIT - IV SOLAR ENERGY CONVERSION (6 Hours)

Photo Voltaic principles – Types of solar cells – Crystalline silicon/amorphous silicon and Thermo - electric conversion - process flow of silicon solar cells - texturization, diffusion, Antireflective coatings, metallization.

UNIT - V NANOMATERIALS IN FUEL CELL APPLICATIONS (6 Hours)

Use of nanostructures and nanomaterials in fuel cell technology high and low temperature fuel cells, cathode and anode reactions, fuel cell catalysts, electrolytes, ceramic catalysts.

TEXT BOOKS

- 1. Solar energy utilization -G.D. Rai -Khanna publishers Delhi 1987.
- 2. Maheshwar Sharon, Madhuri Sharon, Carbon "Nano forms and Applications", Mc Graw-Hill, 2010.

- 3. Soteris A. Kalogirou, "Solar Energy Engineering: Processes and Systems", Academic Press, London, 2009
- 4. Tiwari G.N, "Solar Energy Fundamentals Design, Modelling and applications, Narosa Publishing House, New Delhi, 2002
- 5. Sukhatme S.P. Solar Energy, Tata McGraw Hill Publishing Company Ltd., New Delhi, 1997.

- 1. Energy An Introduction to Physics R.H.Romer, W.H.Freeman.(1976)
- 2. Solar energy thermal processes John A.Drife and William. (1974)
- 3. John W. Twidell& Anthony D.Weir, 'Renewable Energy Resources,2005
- John A. Duffie, William A. Beckman, Solar Energy: Thermal Processes, 4th Edition, john Wiley and Sons, 2013
- 5. Duffie, J.A., Beckman, W.A., "Solar Energy Thermal Process", John Wiley and Sons,2007

СО	Upon completion of this course,	PSOs	Cognitive					
	students would have learned to:	Addressed	Level					
CO-1	Gained knowledge in fundamental aspects of solar energy utilization	PSO1, PSO4	К1					
CO-2	Equipped to take up related job by gaining industry exposure	PSO2, PSO3	K3					
CO-3	Develop entrepreneurial skills	PSO3, PSO4, PSO5	K5					
CO-4	Skilled to approach the needy society with different types of solar cells	PSO4, PSO5	K4					
CO-5	Gained industrialist mindset by utilizing renewable source of energy	PSO1, PSO4	K2, K3					
	K1-Remembering; K2 – Understanding; K3 - Applying; K4 - Analyzing; K5 – Evaluating; K6 - Creating							

Relationship Matrix

Semester	Course Code			Title of the Course				Hours	Cr	edit	
п	24P	PIPH21	H21		SOLAR ENERGY UTILIZATION			30		2	
Course	Prog	ramme	Outco	omes (POs)	Prog	ramme	Specifi	ic Outcomes		
Outcomes								(PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO4 PSO5	
CO-1	3	2	3	3	3	3	2	3	3	3	
CO-2	2	3	2	2	3	2	3	2	2	3	
CO-3	2	3	2	2	2	2 3 2 2		2	2		
CO-4	2	2	2	3	2	2	2	2	3	2	
CO-5	2	2	3	3 2 3 2 2 3 2				3			
	STRONG (3), MEDIUM (2) and LOW (1)										

Prepared by Name:

Checked by

Signature:

Head of the Department

Semester – II	SPECTROS	24PSPH21				
SEC-I		L	Т	P	С	
Hrs./Week: 4	Hrs./Semester : 60	Marks :100	4			3

To have in depth understanding of various techniques of spectroscopy and to study its applications to modern science.

	5 7											
LO	The learners will be able to											
LO-1	Comprehend the theory behind different spectroscopic methods											
LO-2	Know the working principles along with an overview of construction of different types of spectrometers involved											
LO-3	Explore various applications of these techniques in R &D.											
LO-4	Apply spectroscopic techniques for the qualitative and quantitative analysis of various chemical compounds.											
LO-5	Understand this important analytical tool											

Learning Objectives

UNIT-I MICROWAVE SPECTROSCOPY (18 Hours)

Rotational spectra of diatomic molecules - Rigid Rotor (Diatomic Molecules)-reduced mass – rotational constant - Non rigid rotator – Intensity of Spectral Lines- Polyatomic molecules – linear – symmetric asymmetric top molecules - Hyperfine structure and quadrupole moment of linear molecules.

UNIT-II INFRA-RED SPECTROSCOPY (18 Hours)

Vibrations of simple harmonic oscillator – zero-point energy-Anharmonic oscillator – fundamentals, overtones and combinations-Diatomic Vibrating Rotator- PR branch – PQR branch- Fundamental modes of vibration of H_2O and CO_2 - IR Spectrophotometer Instrumentation (Double Beam Spectrometer) – Fourier Transform Infrared Spectroscopy.

UNIT-III RAMAN SPECTROSCOPY (18 Hours)

Theory of Raman Scattering - Classical theory – molecular polarizability - Quantum theory of Raman effect - rotational Raman spectra of linear molecule - symmetric top molecule – Stokes and anti-stokes line-SR branch -Raman activity of H₂O and CO₂ -Instrumentation technique and block diagram -structure determination of planar and non-planar molecules using IR and Raman techniques - FT Raman spectroscopy.

UNIT-IV RESONANCE SPECTROSCOPY (18 Hours)

Nuclear and Electron spin-Interaction with magnetic field - Population of Energy levels - Larmor precession- Relaxation times - Chemical shift and its measurement - NMR of Hydrogen nuclei - Indirect Spin -Spin Interaction – Instrumentation techniques of NMR spectroscopy.

Electron Spin Resonance: Basic principle – Hyperfine Structure (Hydrogen atom) – ESR Spectra of Free radicals –g-factors – Instrumentation - Medical applications of ESR

UNIT-V UV SPECTROSCOPY (18 Hours)

Origin of UV spectra - Laws of absorption – Lambert Bouguer law – Lambert Beer law - transmittance and absorbance - Color in organic compounds - Choice of Solvent and Solvent effect - Absorption by inorganic systems - Instrumentation - double beam UV-Spectrophotometer -Simple applications.

TEXT BOOKS

- 1. C N Banwell and E M McCash, 1994, Fundamentals of Molecular Spectroscopy, 4th Edition, Tata McGraw-Hill, New Delhi.
- 2. G Aruldhas, 1994, Molecular Structure and Molecular Spectroscopy, Prentice–Hall of India, New Delhi.
- 3. D.N. Satyanarayana, 2001, *Vibrational Spectroscopy and Applications*, New Age International Publication.
- 4. B.K. Sharma, 2015, Spectroscopy, Goel Publishing House Meerut.
- 5. Kalsi.P.S, 2016, Spectroscopy of Organic Compounds (7th Edition), New Age International Publishers.

- 1. J L McHale, 2008, Molecular Spectroscopy, Pearson Education India, New Delhi.
- 2. J M Hollas, 2002, Basic Atomic and Molecular Spectroscopy, Royal Society of Chemistry, RSC, Cambridge.
- 3. B. P. Straughan and S. Walker, 1976, Spectroscopy Vol. I, Chapman and Hall, New York.
- 4. K. Chandra, 1989, Introductory Quantum Chemistry, Tata McGraw Hill, New Delhi.
- 5. Demtroder. W, Laser Spectroscopy: Basic concepts and Instrumentation, SpringerLink.

CO	Upon completion of this course,	PSOs	Cognitive
	students would have learned to:	Addressed	Level
CO-1	Understand fundamentals of rotational		
	spectroscopy, view molecules as elastic	PSO1,	
	rotors and interpret their behaviour. Able	PSO3	K2
	to quantify their nature and correlate	1505	
	them with their characteristic properties.		
CO-2	Understand the working principles of		
	spectroscopic instruments and theoretical		
	background of IR spectroscopy. Able to	PSO2,	
	correlate mathematical process of Fourier	PSO3,	K2, K3
	transformations with instrumentation.	PSO4	
	Able to interpret vibrational spectrum of		
	small molecules.		
CO-3	Interpret structures and composition of		
	molecules and use their knowledge of	PSO1,	K5
	Raman Spectroscopy as an important	PSO3,	no
	analytical tool		
CO-4	Use these resonance spectroscopic	PSO1,	
	techniques for quantitative and qualitative	PSO2,	K4
	estimation of a substances	PSO5	
CO-5	Learn the electronic transitions caused by		
	absorption of radiation in the UV/Vis	PSO2,	
	region of the electromagnetic spectrum	PSO3	K1, K5
	and be able to analyze a simple UV	1000	
	spectrum.		
	K1-Remembering; K2 – Understanding; K3 - App K5 – Evaluating; K6 - Creatir		lyzing;

Semester	ter Course Code Title of the Course		I	Iours	Cr	edit					
II	24PSPH21 SPECTROSCOPY 60					60	3				
Course	Prog	gramme	Outco	omes (omes (POs) Programme Specific Outcome					omes	
Outcomes						(PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO5			
CO-1	3	3	3	2	3	3	3	3	2	3	
CO-2	2	2	2	3	3	2	2	2	3	3	
CO-3	3	2	3	3	3	3	2	3	3	3	
CO-4	3	2	3	3	3	3	2	3	3	3	
CO-5	3 3 3 3 3 3 3 3 3 3							3			
	STRONG (3), MEDIUM (2) and LOW (1)										

Relationship Matrix

Prepared by Name:

Checked by

Signature:

Head of the Department